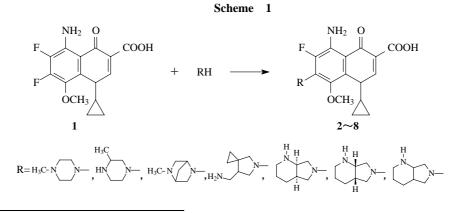
The Synthesis and Activity *in vitro* of a Series of 5-Amino-8-methoxyquinolones


Jiu Yu LIU, Yan LÜ, Yu Cheng WANG, Hui Yuan GUO*

Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050

Abstract: A series of 1-cyclopropyl-5-amino-6-fluoro-8-methoxyquinoline-3-carboxylic acids have been prepared and evaluated for antibacterial activity *in vitro*.

Keywords: Quinolone, synthesis, antibacterial activity.

Since Lesher's discovery of nalidixic acid in 1962, a tremendous amount of synthetic effort has been channeled into the synthesis of quinolone antibacterial agents¹. These research efforts have been rewarded by very significant improvements in antibacterial potency as well as *in vivo* efficacy. In 1995, Sanchez *et al.*² reported that series of (5-amino-)8-methoxyquinolones had antibacterial activity against Gram-positive, Gram-negative, and anaerobic bacteria equivalent to the most active 8-substituted compounds (8-F and 8-Cl). There was also a concomitant reduction in several of the potential side effects (*i.e.*, phototoxicity and clonogenicity) compared to the most active quinolones with classic substitute piperazine, pyrrolidine and piperidine as usual, so our interest was directed to the synthesis a series of 5-amino-8-methoxyquinolones that have novel side chain³⁻⁴ and their antibacterial activity.

* E-mail: hyguo@public.fhnet.cn.net

Jiu Yu LIU et al.

Entry	R	¹ H NMR (CF ₃ COOD, δ ppm),	HR-MS m/z		
2	H ₃ C-N_N_	1.00-1.31 (m, 4H), 3.09 (s, 3H), 3.33-3.97 (m, 11H), 4.24 (m, 1H), 9.11 (s, 1H)	Calcd: 390.170334, Found: 390.171200		
3	H ₃ C HN_NN	(m, 100-1.46 (m, 7H), 3.80-3.97 (m, 10H), 4.26(m, 1H), 9.12 (s, 1H)	Calcd: 390.170334, Found: 390.171239		
4	H ₃ C-N/N-	0.93-1.42 (m, 4H), 2.43-2.57 (s, 2H), 3.08 (s, 3H), 3.64 (s, 3H), 3.26-5.04 (m, 7H), 9.10 (s, 1H)	Calcd: 402.170334, Found: 402.169586		
5		0.78-1.39 (m, 8H), 2.38 (br, 1H), 3.63 (s, 3H), 3.17-4.37 (m, 7H) 8.92 (s, 1H)	Calcd: 416.185984, Found: 416.187194		
6		(CDCl ₃) 0.72-1.02 (m, 4H), 1.55-1.81 (m, 4H), 2.34(br, 1H), 2.69-3.10(m, 2H), 3.44(s, 3H), 3.46-4.05 (m, 6H), 6.34 (br, 2H), 8.62 (s, 1H)	Calcd: 416.185984, Found: 416.187308		
7		(CDCl ₃) 0.72-1.00 (m, 4H), 1.65-1.80 (m, 4H), 2.31 (br, 1H), 2.44-3.20 (m, 2H), 3.21 (s, 3H), 3.46-4.02 (m, 6H), 6.34 (br, 2H), 8.62(s, 1H)	Calcd: 416.185984, Found: 416.185257		
8	H N N N	(CDCl ₃) 0.72-1.24 (m, 4H), 1.63-1.82 (m, 4H), 2.42 (br, 1H), 2.76-3.19 (m, 2H), 3.46 (s, 3H), 3.57-4.04 (m, 6H), 6.34 (br, 2H), 8.61(s, 1H)	Calcd: 416.185984, Found: 416.185949		

 Table 1
 ¹H NMR and HR-MS data of target compounds

The coupling reactions of the novel side chains with 5-amino-8-methoxyquinolone substrates according to well-established literature procedures (Scheme 1)².

In total, we have synthesized seven new target compounds. The structures of these compounds were confirmed by 1 H NMR and HR-MS (data shown in **Table 1**).

Antibacterial Activity

 Table 2
 The antibacterial activity in vitro of target compounds

Strains	MIC (µg/ml)									
Strains	2	3	4	5	6	7	8	9	10	
S. pneumonias 70	0.12	0.06	0.25	0.002	0.01	0.002	0.01	2	0.06	
S. pneumonias 9798	0.12	0.06	0.03	0.005	0.01	0.005	0.01	1	0.12	
S. pyogenes A12	0.12	0.06	0.03	0.01	0.03	0.005	0.03	0.5	0.25	
S. aureus 9616	0.25	0.01	1	0.005	0.5	0.005	0.03	0.25	0.12	
S. epidermidis 26069	0.06	0.01	0.12	0.005	0.01	0.002	0.01	0.5	0.06	
S. epidermidis 9726	0.5	0.01	0.5	0.005	0.03	0.005	1	1	0.12	
E. Coli ATCC 25922	0.5	0.005	2	0.01	1	0.005	1	0.03	0.01	
E. Coli 834	0.06	0.06	0.12	0.01	1	0.01	1	0.03	0.03	
P. aeruginosa ATCC 27853	4	0.5	4	1	4	1	4	0.5	1	
K. pneumoniae14	0.005	0.005	0.5	0.01	1	0.005	0.01	0.01	0.03	
S. typhi H901	0.5	0.12	1	0.03	0.25	0.12	0.12	0.12	0.25	
S. macescens 932	0.25	0.12	1	0.25	1	0.12	0.5	0.06	0.25	

Using ciprofloxcin 9 and gatifloxacin 10 as contrast, we tested the antibacterial activity *in vitro* of the target compounds with some clinical separated pathogens, quality control strains and standard strains. The target compounds 2-8 were tested MICs using double dilution method. The results were shown in **Table 2**.

Compound **3** has activity equivalent to gatifloxacin vs Gram-positive and Gramnegative organisms, compounds **5** and **7** are more active than gatifloxacin vs Grampositive and Gram-negative organisms. All seven compounds, while more active than ciprofloxcin vs Gram-positive organisms, were equipotent against Gram-negative organisms. On the basis of these results, compounds **5** and **7** were selected as candidates for further evaluation.

Acknowledgments

The authors would like to thank the National Research Center of Drug and Metabolite Analysis for measuring the data of ¹H NMR and HR-MS. We also want to thank the pharmacology laboratory of Institute of Medicinal Biotechnology for testing the antibacterial activity.

References

- 1. D. C. Hooper, J. S. Wolfson, N. Engl. J. Med., 1991, 324, 384.
- 2. J. P. Sanchez, R. D. Gogliotti, J. M. Domagala, et al., J. Med. Chem., 1995, 38(22), 4478.
- 3. U. D. Petersen, A. D. Krebs, T. D. Schenke, et al., EP pat: 550903, 1993-07-14.
- 4. H. Y. Guo, J. J. Qi, CN pat: 1400209, 2003-03-05.

Received 28 October, 2003